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1. Introduction 
 
Conservation biology is a 
multidisciplinary scientific field that  
 
 
 
 
 
1. Introduction 
 
Remote sensing data is nowadays an important 
source of information in many agroenvironmental 
studies. It is used for vegetation monitoring and for 
mapping land cover from a regional level to a 
global level (Teillet et al., 1997; Lillesand et al., 
2004). Remote sensing (RS) is in general defined 
as the process of acquiring information about an 
object, area or phenomenon without being in 
physical   contact   with it   (Lillesand  et al.,  2004; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Campbell, 2002). RS is most often understood as a 
means of data acquisition with the use of airplanes, 
balloons and satellite systems, with subsequent 
processing and interpretation.  

In connection with GIS (Geographical 
Information System), remote sensing may be a 
useful tool for classifying land cover. The accuracy 
of such studies is conditioned by the amount, 
extent and accuracy of both satellite data and 
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supplementary data, and also by the classification 
algorithms. In satellite systems, the key parameters 
of the remote data are the spatial, radiometric, 
spectral and temporal resolution (Jensen, 2000). 
The classification algorithms also cover a range of 
possibilities.. 

1972 was a crucial year for vegetation research 
and for Earth surface research. This is when ERTS 
(later Landsat 1), the first satellite for research on 
the Earth’s natural resources was put into orbit. 
This satellite initiated a massive development of 
satellite Earth sensing (Jensen, 2000). Other 
Landsat programme satellites followed and, in the 
1980s, the French SPOT satellite system was 
launched, along with other systems. Recent years 
have seen major developments of commercial 
satellites that supply satellite data in various 
resolutions and in various combinations of spectral 
bands. The data is available for use in various 
applications (http://www.satimagingcorp.com, 
http://www.eurimage.com, http://www.geoeye. 
com). In environmental and agricultural 
applications and in research on land cover, satellite 
data enables direct repetitive monitoring of the 
Earth’s surface. It is thus possible to detect crops 
and their condition throughout a season, to estimate 
yields (the amount of biomass), to detect changes, 
to monitor surface drains, to analyze soil 
conditions, to evaluate the spatial structure of the 
land cover, to classify crops into categories down 
to individual crop types, or to identify vegetation 
infested by insect pests (Franklin et al., 1995). 
 
2. Factors influencing satellite data choice 
 
When selecting satellite data for various purposes, 
we draw on specific technical parameters of the 
satellite measuring apparatus. Resolution is one of 
the most important parameters. The parameters of 
sensors are defined by a set of four resolution 
characteristics, which are decisive for their actual 
use. 
 
Spatial resolution defines the size of the smallest 
segment (pixel) in the recorded scene. It thus 
defines the minimum size of an object that may be 
spotted and identified in the scene (Jensen, 2000). 
High-resolution data (1m per pixel and less in 
panchromatic mode) can be used for analysing the 
spectral response of individual crops. Data of 
moderate spatial resolution (generally 100–10m per 

pixel) is used for evaluating various types of land 
cover. Finally, data of low spatial resolution (1000 
– 100m) is a tool for research on global changes 
(Lillesand et al., 2004). Spatial resolution not only 
defines the degree of detail that the data can 
express. Due to the limited capacity of the acquired 
data volume it also correlates inversely with the 
size of the scanned area.   

 
Spectral resolution affects the amount and type of 
thematic information obtainable from a satellite 
scene (distinguishing between different types of 
vegetation, etc.). It defines the number and the 
width of the spectral intervals (bands) that are used 
(Jensen, 2000). A sensor is characterized not only 
by the number of bands but also by their position in 
the electromagnetic spectrum. According to the 
number and extent of the spectral channels, we 
divide RS data into panchromatic (describing the 
reflectance in one spectral band, usually in the 
visible (VIS) or near infrared (NIR) spectrum), 
multispectral (describing the reflectance in at least 
three spectral bands, which usually include the VIS 
and infrared (IR) part of the optical spectrum) and 
hyperspectral (describing the reflectance in tens to 
hundreds of very narrow spectral bands with a 
focus on differentiating very fine characteristics of 
the Earth’s surface) (Jensen, 2000). Unfortunately, 
the spatial resolution is often much worse in 
multispectral and hyperspectral data than in 
panchromatic data. According to the extent of the 
spectral bands, Asrar (1989) divides data 
recordings (and subsequently also RS subject 
areas) into optical (including VIS 0.4 – 0.7µm, 
near IR 0.7 – 1.5µm and middle IR 1.5 – 3µm), 
thermal (3µm – 1mm) and microwave (radar) RS 
(1mm – 1m). 

 
Radiometric resolution determines the value scale 
(gray shades) of each pixel in the scene, indicated 
in bits (bit/pixel). It is defined by the sensitivity of 
the detector and the amount of incident radiation 
that is recorded. The best (16bit) information about 
radiometric resolution is provided by the ERS and 
Envisat satellites, together with the Hyperion 
sensor, which is carried by the EO-1 satellite. The 
standard in most other commercial satellites with 
high resolution is 11bit (IKONOS, QUICKBIRD, 
ORBVIEW-3 etc.). Satellites with middle spatial 
resolution usually provide 8bit data.  
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Temporal resolution characterizes how often a 
system records data from the same area, i.e. the 
time interval between two subsequent revisits of 
the sensor (http://www.satimagingcorp.com). 
Geostationary satellites have the highest resolution, 
and are able to scan one area in minutes or tens of 
minutes. In satellites on polar orbits, it is possible 
to improve the temporal resolution significantly by 
turning the sensors to the sides, as in the SPOT 5 
satellite. Scenes of the same area in different 
periods provide unique information for detecting 
changes such as the development of cloud systems, 
fires, erosion, the development of riverbeds or 
changes in percentage of forest cover. In such cases 
the temporal resolution may be the limiting factor. 
It may also cause problems when it is necessary to 
compare land covers of the same phenophase in 
different years (Justice et al., 1985; Xin et al., 
2002). The situation is also complicated by 
changing cloud cover, which can make the 
recording unusable (Moulin et al., 1997). 

The main advantage of satellite data is its 
ability to record a large area at one time. We can 
thus choose data from a wide spectrum of satellite 
systems that can be used for studies at local, 
regional as well as global levels. The size of the 
scene and the corresponding size of the pixel 
(spatial resolution) are important. Other parameters 
for the selection of satellite scenes may then be 
demanding for pre-processing and evaluation. 
Their price and format, or the time needed for 
acquisition or delivery, will be decisive. 
 
3. Overview of available satellite systems 
 
Land cover is most often classified and analysed by 
multispectral optical systems. Recently, 
hyperspectral and radar data has been made used 
of. The main RS techniques, their advantages and 
limitations, together with information about data 
prices are summarized in the report by Malthus et 
al. (2002). 

Optical data is mostly divided into three main 
groups, according to spatial resolution (see above). 
Data with low to moderate spatial resolution, 
covering tens of kilometres to hundreds of metres, 
is used for agricultural applications, in particular 
for monitoring vegetation conditions and 
development, crop modelling and yield forecasting 
on a large scale. Meteorological satellites used for 
vegetation mapping include one of the oldest low-

resolution meteorological systems, NOAA 
(National Oceanic and Atmospheric 
Administration), AVHRR, sensing in VIS, IR and 
three thermal bands (Campbell, 2002). VIS and IR 
bands are primarily used for cloud identification, 
but may also be used for calculating spectral 
vegetation indices (e.g. NDVI) and thus for 
estimating amounts of biomass (green matter) or 
the Leaf Area Index (LAI) on a global scale 
(Vohora, Donoghue, 2004). They may also be used 
for monitoring cultivated crops, the progress of 
phenophases (phenological phases) (Shibayama et 
al., 1999; Xin et al., 2002; Dymond et al., 2002), or 
for estimating the yield of farm products (Seiler et 
al., 2000). 

High spatial resolution data (tens of metres) is 
used in a wide spectrum of applications on a 
regional level – e.g. for regional mapping of 
conditions, development and changes in landscape 
(land cover/land use), regional planning, city 
development monitoring, vegetation conditions 
(Zerger et al., 2009; Lelong et al., 1998; Yang et 
al., 2003) and development monitoring, farm land 
mapping and crop classification (Vancutsem et al., 
2009, Rogan et al., 2008), forest condition 
monitoring and forest ecosystem classification 
(Schlerf, Atzberger, 2006), monitoring of mining, 
geological mapping (Nikolakopoulos, Tsombos, 
2008), geomorphologic mapping, natural disaster 
impact mapping, etc. 

One of oldest satellite systems most frequently 
used for agricultural purposes is LANDSAT. It 
provides the longest time sequence of remote 
sensing data (since 1972). This is why the satellites 
are often used for land cover classification (Oetter 
et al., 2000; Knorn et al., 2009) and for detecting 
changes in land cover/land use (Cihlar et al., 2000). 
The data continuity of the Landsat system is at risk 
because of problems with two satellites of the 
system on the orbit – the old Landsat 5 satellite and 
Landsat 7, which has sufffered damage. In 
addition, the thermal channel with which Landsat 5 
and 7 are equipped is not planned to be included in 
the equipment of the LDCM (Landsat Data 
Continuity Mission), the satellite that is to take 
over the scientific challenges of Landsat 5 and 7 
(Wulder et al., 2008). There are other sensors with 
high spatial resolution with similar parameters to 
Landsat – ASTER, carried by the TERRA satellite, 
and ALI, carried by EO-1 (Nikolakopoulos, 
Tsombos, 2008). ASTER provides data in even 
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better resolution (15m) in multispectral mode, and 
its spectral resolution is higher than in Landsat (14 
bands). This can be used in quantitative analyses 
such as for determining land cover types, or for 
monitoring vegetation and ecosystem dynamics. 
The ALI sensor (Advanced Land Manager) was 
developed for the next generation of the Landsat 
system, and thus has similar parameters (30m 
resolution). It can be used as an alternative to 
Landsat data in cases when it is not necessary to 
monitor large areas, because ALI has a much 
narrower scanning area (37km) than the 185 km 
scanning area of Landsat. Resourcesat-1 – the 
newest satellite of the IRS (Indian Remote 
Sensing) system, launched in 2003 – was intended 
particularly for agricultural applications. In the VIS 
and NIR parts of the spectrum Resourcesat-1, using 
a LISS-IV sensor, scans with very high resolution 
(5.8m). In middle IR (LISS-III), this satellite scans 
with resolution of 23.5m, while the width of the 
scanned area is 141 km. These sensors supply data 
useful for applications examining vegetation, such 
as yield assessment and crop identification. In 
small-scale data recording in middle IR, the 
AWIFS sensor with 56m resolution and width of 
the scanned area of 740 km is used. The SPOT 
satellite system (the two latest satellites, SPOT 4 
and 5, are currently in operation) forms a transition 
between Landsat and systems with very high 
resolution (Ikonos, QuickBird). They may also 
serve as a compromise when it is not necessary to 
obtain data with the highest spectral resolution, 
such as the data supplied by the HYPERION 
sensor. The major advantage is that SPOT data 
offers a balance between scene size with high 
spatial resolution and relatively good spectral 
resolution for large areas (60x60 or 60x120 km). 
Thanks to the distribution of the SPOT satellites 
and the frequency of their scanning, an image can 
be obtained of any place on Earth every day 
(http://www.satimagingcorp.com). 

The last group of optical data has very high 
resolution of about one metre. Satellites used for 
this purpose record data either only in 
panchromatic mode (KOSMOS, EROS, 
CARTOSAT-1, WorldView-1) or in a combination 
of panchromatic and a multispectral regime 
(FORMOSAT-2, IKONOS, OrbView-3, 
QuickBird, KOMPSAT-2 etc.). Most of the data is 
11bit data; only FORMOSAT-2 provides 8bit 
scenes and EROS B and KOMPSAT-2 provide 

10bit data (http://www.spotimage.com). Such data 
may be used for local-scale applications, detailed 
mapping, precise farming and farming activity 
inspection, spread vegetation mapping, soil erosion 
mapping, and also in many other fields (building 
industry, humanitarian aid, urbanistic studies and 
3D city models, forestry, insurance, etc.). 

Currently the highest resolution is provided by 
GeoEye-1 satellites (41 cm in panchromatic mode 
and colour images with resolution of 1.65 m), and 
WorldView-1 satellites of the Digital Globe 
company but only in a panchromatic regime with 
0.5 m resolution (www.digitalglobe.com). 

The ALOS satellite has provided a combination 
of optical and radar data since 2006. It carries two 
optical sensors (panchromatic PRISM, AVNIR-2 
radiometer) that can scan during the day, and one 
radar (PALSAR) also suitable for scanning under 
any weather conditions and at night. The spatial 
resolution of panchromatic data is 2.5 m in nadir; 
multispectral data has resolution of 10 m, and the 
resolution of radar data ranges from 10 to 100 
metres (http://earth.esa.int). 

Obtaining data from the microwave part of the 
spectrum has many advantages, and for this reason 
the use of radar data in vegetation studies has been 
increasing recently (Walker et al., 2007). Scanning 
in long wavelengths from approx. 1 mm to 1 m 
(Lillesand et al., 2004) and the low frequency of 
microwave radiation enable radars to acquire data 
without being limited by cloud cover, weather 
conditions (based on wavelength) or nighttime. 
Thus this type of data complements optical data 
well. Based on different reflective and emissive 
characteristics of objects on the ground in optical 
and microwave parts of the spectrum, it is possible 
to distinguish between objects that seem to be 
similar in the visible part of the spectrum only. The 
spatial resolution of radar scenes from the older 
system was around 10 m and more (ENVISAT, 
RADARSAT-1, ERS). The resolution has been 
improved lately. Today, commercially available 
data has resolution of 1–3 metres (RADARSAT-2, 
TerraSar-X, COSMOSkyMED). It is not suitable to 
make exclusive use of radar data in vegetation 
mapping, but, in connection with optical data, radar 
data improves the resulting classification. As for 
low spectral resolution, it is not possible to 
differentiate individual types of growth; it is only 
possible to identify the borders of fields (Hong et 
al., 2007). Multitemporal radar scenes of the same 
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area may be used for detecting changes (Simone et 
al., 2002).  

The main advantages of hyperspectral data over 
multispectral data are their high spectral resolution 
and, above all, their continuous nature (Erives, 
Fitzgerald, 2005; Turner et al., 2003; Lawrence et 
al., 2006). For each of the pixels of the scene, it is 
possible to obtain a continuous spectrum, directly 
comparable to the field data recorded by laboratory 
spectrometers (Crouvi et al., 2006). So far, the only 
commercial satellite sensor providing hyperspectral 
scenes of high radiometric accuracy is Hyperion, 
which is carried by NASA (National Aeronautics 
and Space Administration) EO-1 satellite 
(http://eo1.gsfc.nasa.gov/). 
 
4. Vegetation mapping 
 
Vegetation mapping is based on knowledge of the 
reflectance differences between vegetation types in 
different intervals of the electromagnetic spectrum. 
The spectral behaviour of vegetation is 
characterised primarily by a marked increase in 
reflectance in the near infra-red part (0.7–1.1 µm) 
and very low reflectance in the visible part of the 
electromagnetic spectrum (0.43–0.66 µm) (Meer, 
Jong, 2001). The reflectance of green plants is 
lowest in the blue and particularly in the red part of 
the visible spectrum, because of the high 
absorption of radiation of photosynthetic pigments 
(Meer, Jong, 2001). 

Healthy vegetation is manifested by a high 
increase in reflectance between VIS and NIR, 
which is called the “red edge”. For the purposes of 
comparability, the red edge is quantified as one 
value (red edge inflection point). Methods for 
calculating it are given e.g. by Meer, Jong (2001). 
The spectral behaviour of plants is influenced by 
many factors, which may variously modify the 
characteristic reflectance signature of healthy 
vegetation: type of vegetation, inner and outer 
structure of vegetation, health condition of plants, 
water content, spatial distribution of vegetated and 
non-vegetated areas, leaf area index, leaf angle 
distribution, etc. (Jensen, 2000; Asner, 1998; Sims, 
Gamon, 2002). The RS of vegetation can be used 
for mapping changes during a growing season and 
also throughout the year, for monitoring 
abnormalities such as soil compaction, watering 
problems, plant stress (Lelong et al., 1998) or weed 
and invasive plant species distribution (Lawrence 

et al., 2006, Underwood et al., 2003) etc. There are 
various classification methods, from visual 
interpretation of remote scenes to automatic 
classification by means of various calculation 
algorithms. 
 
Vegetation indices 
A commonly-used vegetation mapping method is 
based on vegetation indices calculated from 
multispectral or hyperspectral data. Through 
vegetation indices, the main features of vegetation 
spectral signatures are emphasized. These indices 
mostly express the relation between red (600–
700nm) and NIR (700–900nm) reflectance. While 
irradiance is strongly absorbed by chlorophyll in 
the visible red band, reflectance increases sharply 
in the NIR part of the spectrum (Meer, Jong, 2001). 
Reflectance is also strongly affected by water 
content in plants (Asner, 1998; Bowyer, Danson, 
2004). The general rule is that the lower the water 
content, the higher the reflectance (Jensen, 2000). 

The most commonly used vegetation indices are 
RVI (Ratio Vegetation Index), DVI (Difference 
Vegetation Index), LAI (Leaf area index) (Yang et 
al., 2007), NDVI (Normalized Difference 
Vegetation Index), SAVI (Soil Adjusted 
Vegetation Index) and Tasseled Cap (Dymond et 
al., 2002; Suming, Sader, 2005). 

The most widespread index is NDVI, defined as 
(NIR–RED)/(NIR+RED) (Tucker, 1979), which is 
used for monitoring vegetation conditions and land 
cover changes. Teillet et al. (1997) present the 
NDVI index as an indirect tool for studying the 
biophysical features of vegetation and their 
connections to biomass distribution, LAI, primary 
productivity, photosynthetic radiation, CO2 and 
ecological and climatic parameters. Because of 
different spectral (different width of the sensed 
bands) and spatial (different scale) resolution and 
radiometric processing of the data, it is not possible 
to make a direct comparison of NDVI calculated 
from data gathered by different sensors. 

Bannari et al. (2006) give examples of indices 
used in agroenvironmental studies for mapping 
crop residues: Brightness Index (BI), Cellulose 
Absorption Index (CAI), Normalized Difference 
Index (NDI), Soil Adjusted Corn Residue Index 
(SACRI), Modified Soil Adjusted Corn Residue 
Index (MSACRI) and Crop Residue Index 
Multiband (CRIM). These indices use the NIR and 
SWIR reflectance values to show distinct spectral 
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characteristics associated with the cellulose and 
lignin content in crop residues. However, the 
accuracy of these indices is usually low. They 
cannot distinguish a spectral mixture of different 
materials in the same pixel. Vegetation indices may 
also serve as a basis for further landscape analyses. 
Land Surface Emissivity is one example. It is 
important for surface temperature, energy balance 
and land cover evaluations, and also for other 
agroenvironmental studies. It is also used in 
methods for atmospheric correction. Valor and 
Caselles (1996) showed a relation between surface 
emissivity and vegetation indices (NDVI, SAVI) 
and other methods of vegetation cover mapping 
(e.g. Spectral Mixture Analysis). They also 
presented the Temperature/Emissivity Separation 
(TES) algorithm, which is used for creating land 
surface emissivity images, a standard product of 
the ASTER sensor provided by the NASA 
company. However, this product is not suitable for 
agricultural purposes because of scaling problems 
(Jiménez-Muñoz et al., 2006). 
 
Data classification 
There are many kinds of image classification, from 
traditional automatic per-pixel methods (including 
supervised, unsupervised and hybrid classification) 
to relatively new automatic machine learning 
methods or object classification. The aim of the 
classification is to find and merge objects with 
similar characteristics into classes that describe 
various sorts of objects on the Earth’s surface. The 
most widely-used classifiers are those based on 
spectral behaviour (spectral pattern recognition). 
Other classifiers may use spatial pattern 
recognition or temporal behaviour of objects, as in 
the case of crops, where spectral and spatial 
parameters typically change in time (Jensen, 2000).  
Traditional image classification methods are based 
only on knowledge of the spectral characteristics of 
the objects of interest. They work with original 
bands or bands calculated by transformation of the 
original bands, and cannot combine data of 
different types (Jensen, 2000). Automatic 
classification methods categorize each pixel into a 
defined class (supervised) or a cluster 
(unsupervised) just on the basis of the values of the 
classified pixel in the processed bands, without 
considering the characteristics of the surrounding 
pixels. For this reason, this process is also called 
“per-pixel”  or  “hard”  classification  (Tatem et al., 

2001; Zhang et al., 2008).  
The use of supervised classification in many 

applications is limited by the choice of a suitable 
algorithm. Mean spectral values of various classes 
in distance-based classifiers, and variance in 
addition to probability-based classifiers as a 
decision rule, are therefore used (Castillejo-
González et al., 2009). For angular-based 
classifiers (SAM, CAC), the classification decision 
rule based on spectral angles formed between the 
reference spectrum (endmembers or spectral 
library) and an unclassified pixel is used. SAM 
(Spectral Angle Mapping) is relatively insensitive 
to illumination and albedo effects (South et al., 
2004). CAC (Cosine of the Angle Concept) 
incorporates in addition the length of the reference 
signatures, which supplies additional information 
to the classification. South et al. (2004) present this 
classifier as a method suitable for discriminating 
objects with a similar spectral manifestation (soil 
and senescent crop residues). 

Unsupervised classification algorithms (e.g. K-
means, ISODATA) are used to create spectrally 
separated categories (or spectral classes) without 
direct intervention of the user (Castillejo-González 
et al., 2009). There are more spectral classes in 
images with unsupervised classification than in 
images with supervised classification. 
Unsupervised classification is therefore suitable for 
revealing very small differences between classes of 
external similarity. Vancutsem et al. (2009) used 
the ISODATA algorithm for classifying vegetation 
types in a series of scenes from the SPOT 
Vegetation satellite. Daily data acquisition allows 
complete temporal characterization of vegetation. 

Various types of input data can be used in 
machine learning algorithms (e.g. ANN, DT). It is 
possible to combine data from the optical part of 
the spectrum with radar or morphometric data 
generated by processing a digital terrain model. As 
these methods are non-parametric, normal 
distribution of the input data is not required.  

The use of artificial neural networks (ANN) in 
land cover mapping is mentioned e.g. by Carpenter 
et al. (1999). Neural network methods may also be 
used for mapping land cover changes or for 
estimating biophysical parameters (Fernandes et 
al., 2004). ANN can also be used for classifying 
different crops or for identifying weeds (Yang et 
al., 2003). 

Decision trees (DT) is a supervised classification 
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method that requires extensive well-balanced 
training data to perform adequately. The most 
commonly used algorithms for land cover 
evaluation are the S-Plus classification tree (Rogan 
et al., 2008), the C4.5 classification tree, or 
classification and regression trees (C&RT, Hansen 
et al., 2000; Homer et al., 2002; Yang et al., 2003). 
DT methods may be used for classifying 
hyperspectral data, where their continuous nature 
allows us to find information about physical 
parameters (such as crop cover, crop health, soil 
moisture, and temperature). They can then be used 
in agriculture for planning operations such as 
fertilization, ploughing, chemical protection or 
treatment of crop residues. 

Hyperspectral reflectance measurements may be 
used as a direct input into DT classifications, and 
provide even higher accuracy than DT based on the 
NDVI vegetation index (Yang et al., 2003). 
Lawrence et al. (2006) shows some advantages of 
the BCC (Breiman Cutler Classification) methods 
over other classification tree-based attitudes, e.g. in 
classifying invasive plant species. 

Object-based methods for image analysis have 
the advantage of incorporating the spatial context 
and mutual relationships between objects 
(Blaschke, 2010). Apart from spectral information, 
they also use shape, texture and topological data. 
Conchedda et al. (2008) used these classification 
methods for mapping land cover and changes in 
land cover using SPOT XS in the Definience 
Professional software environment (Definiens 
2006). Land cover and vegetation (locality 
conditions) change analysis with the use of 
multispectral aerial scenes analysed by object 
classification are presented by Walter (2004) and 
by Stow et al. (2008). 

With the increasing amount of commercially-
available data, new methods for classifying land 
cover in various extents are continuously 
developing. Land cover evaluation of large areas 
using the Chain classification method is presented 
by Knorn et al. (2009). Chain classification is a 
new approach to the classification of land cover on 
large areas. This method uses the classification of 
one image to train a classifier for the neighbouring 
images. The approach is simple, as it only requires 
accurate georeferencing of scenes and no 
atmospheric correction. Chain classification can 
also be used for classifying images from different 
sensors with different radiometric or geometric 

resolutions in the same chain, as long as 
sufficiently large overlap areas exist between them. 
The method has been used for forest vegetation, 
but is also usable for other types of vegetation 
cover (Knorn et al., 2009). 
 
Problems of vegetation mapping 
Problems and factors that may affect accurate 
vegetation cover classification are linked to 
technical features of the sensors and to the 
selection of a suitable classification method. 
Mapping is also influenced by the physical and 
biological characteristics of the locality and by the 
vegetation itself. 

The spectral characteristics of crops are 
influenced by the chlorophyll and water content, 
and they therefore change in the course of the 
growing season. For better identification, it is 
beneficial to use a set of scenes acquired 
throughout the growing season of the studied crop. 
Best results for crop identification may be achieved 
during the phase of full vegetation development, 
when the influence of the soil on the spectral 
reflectance of the habitat is lowest. The exact time 
of full development, however, differs from crop to 
crop. The problem in crop classification linked to 
the differences in spectral reflectance due to 
uneven crop maturation and differences in the 
growth phase of plants within a single field or 
among different surfaces (caused by different date 
of sowing) are presented by Nellis, Tao (1999). 
Spectral reflectance is also influenced by soil 
humidity, orientation and slope of the surfaces, or 
elevation. Identification of crops or detection of 
changes on agricultural surfaces is performed by 
multitemporal classification (Hansen et al., 2000). 

Although there are enough satellites with high 
spatial resolution, individual pixels may still 
contain more than one class (object). It such a case, 
mixels (mixed pixel/element), pixels with mixed 
spectral information (containing objects belonging 
to different spectral classes), may appear and cause 
accuracy problems if traditional classification 
methods are used. Mixels appear when the spatial 
frequency of the land cover classes is higher than 
the pixel size (Zhang et al., 2008). 

Traditional “hard” per-pixel methods assign each 
pixel to one class. Such strict classification of 
mixels would lead to an information loss. 
Therefore, alternative methods which use “soft” 
classifiers have to be used for mixel classification. 
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These methods are called sub-pixel classifications. 
Mixels are divided into individual fractions 
(according to the number of objects), which 
correspond with areas outside the pixel. The 
fractions are then assigned to individual land cover 
classes (Blaschke et al., 2002). From the soft 
classification, a number of fraction images is 
gained which is equal to the number of land cover 
classes (Zhang et al., 2008).  

An overview of sub-pixel classifications is given 
by Fernandes et al. (2004). The presence of mixels 
may cause difficulties in classifying the presence of 
crop residues in fields. Such residues play an 
important role in protecting soil against wind and 
water erosion. Moreover, they have many other 
beneficial effects on soil (soil structure 
improvement, increased organic matter content, a 
positive influence on water infiltration into soil, 
evaporation, temperature). They also play an 
important role in CO2 fixation. Information on the 
amount of crop residues is also important as an 
input into soil erosion models. One of the methods 
used for distinguishing drying vegetation from soil 
is SMA (Spectral Mixture Analysis) (Bannari et al., 
2006; Kressler, Steinnocher, 1999; Dennison et al., 
2003; Arsenault, Bonn, 2005). Soil and dry 
vegetation appear similar in the IR part of the 
spectrum. Bannari et al. (2006) and Arsenault and 
Bonn (2005) suggested differentiating between dry 
vegetation (lignin and cellulose absorption 
features), soil and green vegetation with the use of 
hyperspectral data, where the continuous type of 
data makes it possible to detect differences in the 
SWIR part of the spectrum. SMA fractions are 
more robust than traditional vegetation indices, 
particularly when classifying hyperspectral data 
(Dennison et al., 2003). The SMA algorithm was 
also used by (Kressler, Steinnocher, 1999) for 
detecting changes in land cover from NOAA-
AVHRR data. 

Although data is available from commercial 
satellites with sufficient spectral, spatial and 
temporal resolution, only a small part of this data 
complies with all requirements for growth type 
identification in farming applications (Hong et al., 
2007). 

Image fusion, which aims to improve the 
information value of the resulting scene, may be a 
solution to this problem. Image fusion has been 
used extensively to provide a single image that 
simultaneously combines high spectral information 

(from multispectral or hyperspectral images) with 
high spatial information from panchromatic images 
or from radar satellites.  

Available image fusion techniques (IHS - 
Intensity, Hue, Saturation), PCA (Principal 
Components Analysis), arithmetic combination 
based fusion, and wavelet based fusion), together 
with a description of them, common problems 
(such as colour distortion) and restrictions have 
been described by Zhang (2002). Simone et al. 
(2002) presented types of fusions and methods of 
radar and optical data fusion. 

Combined optical and radar data can be used for 
more accurate classification of land cover (Hong et 
al., 2007) or for mapping the height of vegetation 
growth (Walker et al., 2007). The possibilities of 
improving LANDSAT scene temporal resolution 
by means of fusion with high temporal resolution 
data (1–2 days) acquired by the MODIS sensor, 
carried by the TERRA satellite, have been 
described by Hilker et al. (2009). 
 
5. Conclusions 
 
Differences in spatial, temporal and spectral 
resolution are limiting factors for the use of RS 
data in various applications. Unfortunately, due to 
technical constraints, satellite RS systems can only 
offer high spatial resolution combined with low 
spectral resolution, or vice versa. This means that a 
system with high spectral resolution can only offer 
medium or low spatial resolution. Therefore, it is 
necessary either to find compromises between 
different resolutions with respect to the application, 
or to utilize alternative data acquisition methods. 

It is not possible to recommend one general 
method of data analysis, because each method 
offers information of a different type. On the other 
hand, it is possible to combine RS data, supply it 
with field measurements and thus improve the final 
information and its accuracy. Satellite scenes may 
supply or even substitute data for terrestrial 
research, as we can obtain information about large 
areas and about areas which are difficult to access. 
This can significantly decrease the costs of data 
acquisition. Satellite data will continue to become 
more available, at it will be increasingly used 
because of its spatial nature, and because it can be 
processed digitally and easily archived. 
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